David, W. I. F., Akporiaye, D. E., Ibberson, R. M. \& Wilson, C. C. (1988). The High Resolution Powder Diffractometer at ISIS - An Introductory User's Guide. Rutherford Appleton Laboratory, Oxfordshire, England.
David, W. I. F., Ibberson, R. M. \& Wilson, C. C. (1988). Report RAL-88-103. Rutherford Appleton Laboratory, Oxfordshire, England.
Green, M. A., Johnston, R. J. \& Prassides, K. (1991). Unpublished.
Mattheiss, L. F. (1990). Phys. Rev. B, 42, 359-365.
Mattheiss, L. F. \& Hamann, D. R. (1982). Phys. Rev. B, 26, 2686-2689.

Poix, P. (1980). J. Solid State Chem. 31, 95-102.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-70.
Ritter, H., Ihringer, J., Maichle, J. K., Prandl, W., Hoser, A. \& Hewat, A. W. (1989). Z. Phys. B, 75, 297-302.
Rosseinsky, M. J., Prassides, K. \& Day, P. (1989). Physica C, 161, 21-33.
Sleight, A. W., Gillson, J. L. \& Bierstedt, P. I. (1975). Solid State Commun. 17, 27-28.
Temmerman, W. M. \& Rosseinsky, M. J. (1991). Unpublished.
Vidyasagar, K., Gopalakrishnan, J. \& Rao, C. N. R. (1985). J. Solid State Chem. 58, 29-37.
Weiss, R. Faivre, R. (1959). C. R. Acad. Sci. 248, 106-108.

Acta Cryst. (1991). C47, 2522-2525

Structure of Pentasilver(I) Dicopper(II) Mononitrate Tetraselenite(IV)

By H. Effenberger
Institut für Mineralogie und Kristallographie der Universität Wien, Dr Karl Lueger-Ring 1, A-1010 Vienna, Austria

(Received 15 February 1991; accepted 12 June 1991)

Abstract

Ag}_{5} \mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{SeO}_{3}\right)_{4}, \quad M_{r}=1236 \cdot 26\), triclinic, $\quad P \overline{1}, \quad a=5.148$ (2),$\quad b=7.050$ (2),$\quad c=$ 10.540 (3) $\AA, \quad \alpha=73.09$ (1),$\quad \beta=89.08$ (1), $\quad \gamma=$ $88.50(1)^{\circ}, V=365 \cdot 85 \AA^{3}, Z=1, D_{x}=5.61 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \lambda=0.71073 \AA, \mu=18.6 \mathrm{~mm}^{-1}, \quad F(000)=$ 556 , room temperature, $R(F)=0.045$ for 3026 independent reflections with $F_{o}>3 \sigma\left(F_{o}\right)$ and 143 variables. Elongated tetragonal dipyramids $\mathrm{Cu}^{[4+2]} \mathrm{O}_{6}$ and SeO_{3} groups are corner connected to form layers in (010). Irregularly coordinated Ag atoms with $\mathrm{Ag}-\mathrm{O} \geq 2.202 \AA$ join them to form a three-dimensional network. The orientation of the nitrate group is disordered with the N atom formally on $\overline{1}$.

Introduction. Syntheses within the system $\mathrm{Ag}_{2} \mathrm{O}$ -$\mathrm{CuO}-\mathrm{SeO}_{2}$ and nitric solvents produced the new compound $\quad \mathrm{Ag}_{5} \mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{SeO}_{3}\right)_{4}$. Copper(II)-nitrate-selenite(IV) salts are known from the two compounds $\mathrm{PbCu}_{3}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)\left(\mathrm{SeO}_{3}\right)_{3} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Pb}_{2} \mathrm{Cu}_{3} \mathrm{O}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{SeO}_{3}\right)_{2}$ (Effenberger, 1986). In connection with systematic studies of the stereochemistry of $\mathrm{Cu}^{\mathbf{1 1}}$ with O atoms the crystal structure of the title compound was determined.

Experimental. For synthesis 2 g of an equimolar mixture of $\mathrm{Cu}(\mathrm{OH})_{2}, \mathrm{SeO}_{2}$ and AgNO_{3} were heated under hydrothermal conditions in a Teflon-lined autoclave ($\sim 6 \mathrm{ml}$ capacity, $T=503 \mathrm{~K}, 80 \%$ degree of filling, reaction time 2 d). The ratio of primary products can be varied over a wide range yielding the same reaction products but in different amounts. The

0108-2701/91/122522-04\$03.00
title compound forms emerald green, multifaceted crystals, typically 0.1 to 0.5 mm in diameter, which were easily separated from the accompanying reaction products $\left(\mathrm{Ag}_{2} \mathrm{SeO}_{3}\right.$ and $\left.\mathrm{CuSeO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ by hand picking.

Single-crystal X-ray Weissenberg photographs showed a metrically triclinic cell. Data collection from a $0.16 \times 0.23 \times 0.39 \mathrm{~mm}$ single crystal, crystallographic forms $\{010\},\{011\},\{01 \overline{1}\},\{001\},\{\overline{2} 10\}$, $\{\overline{2} 11\}$ and $\{021\}$; Stoe-AED2 four-circle diffractometer, graphite-monochromatized Mo $K \alpha$ radiation, lattice parameters from 75 reflections with $44 \cdot 3 \leq 2 \theta$ $\leq 55.0^{\circ} ; 2 \theta / \omega$-scan mode, step width of 1.44° increased for $\alpha_{1}-\alpha_{2}$ dispersion, $0 \cdot 24^{\circ}$ on each side for background correction, scan speed 1.2 to 3.6° per min ; three standard reflections, intensity drop 14% during data collection; 7021 reflections in the range $4 \cdot 0 \leq 2 \theta \leq 70 \cdot 0^{\circ}(h:-8 \rightarrow 8, k:-11 \rightarrow 11, l:-17 \rightarrow$ 17), 3221 reflections in unique data set $\left[R_{\mathrm{int}}\left(F^{2}\right)=\right.$ $0 \cdot 060$], 3026 reflections with $F_{o}>3 \sigma\left(F_{o}\right)$ were used for structure refinement, absorption correction according to crystal shape (Gaussian integration: transmission factors from 0.021 to 0.162), corrections for Lorentz and polarization effects. Complex neutral atomic scattering functions (International Tables for X-ray Crystallography, 1974, Vol. IV). All calculations were performed with the program system STRUCSY on an ECLIPSE S140 (Data General). Some of the atomic coordinates of the Ag , Cu and Se atoms were located by direct methods, the others by subsequent Fourier and difference Fourier summations. The nitrate group shows an © 1991 International Union of Crystallography
orientational disorder with the N atom formally on a centrosymmetric position according to the average space group $P \overline{1}$. The appearance of superstructure reflections on long-time exposure Weissenberg film photographs was not observed, nor could ordering due to a lower space group symmetry be verified within the accuracy of the structure refinement. Several cycles of least-squares refinement on F with anisotropic displacement parameters for all atoms and a split model for the nitrate group gave $R=$ 0.045 and $w R=0.047, w=\left[\sigma\left(F_{o}\right)\right]^{-2}(143$ variables $)$. $\Delta / \sigma<10^{-3}$; maximum and minimum heights in the final difference Fourier summation are 3.4 and $-3 \cdot 1 \mathrm{e} \AA^{-3}$, highest maxima near the Ag atoms. Extinction correction gave $g=1.89(7) \times 10^{-5}$ (Zachariasen, 1967). The final atomic coordinates are compiled in Table 1,* Table 2 gives some important interatomic distances and angles.

Discussion. The coordinations of the three crystallographically different Ag atoms exhibit distinct coordination figures, symmetry is $\overline{1}$ for atom $\mathrm{Ag}(1)$ and 1 for atoms $\mathrm{Ag}(2)$ and $\mathrm{Ag}(3)$. The nearestneighbour environments of atoms $\mathrm{Ag}(1)$ and $\mathrm{Ag}(2)$ are well defined: ligands are exclusively O atoms of the ordered selenite groups whereas some of the O atom ligands of the $\mathrm{Ag}(3)$ atom belong to nitrate groups which show orientational disorder.

The linear [2] coordination of the $\mathrm{Ag}(1)$ atom in $\mathrm{Ag}_{5} \mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{SeO}_{3}\right)_{4}$ with $\mathrm{Ag}-\mathrm{O}$ bond distances of $2 \cdot 384 \AA$ is worth mentioning, although it is known from a few Ag^{1} oxides. The $\mathrm{Ag}^{[2]}-\mathrm{O}$ bond lengths are always shorter than in the title compound: in $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{Ag}-\mathrm{O}$ is $2.051 \AA$ (Swanson, Morris, Stinchfield \& Evans, 1962) in monoclinic and tetragonal $\mathrm{Ag}^{1} \mathrm{Ag}^{\prime \prime} \mathrm{O}_{2}$ the two $\mathrm{Ag}^{\mathrm{I}}-\mathrm{O}$ bond lengths are $2 \cdot 161$ (5) and $2 \cdot 183$ (3) \AA, respectively (Jansen \& Fischer, 1988; Yvon, Bezinge, Tissot \& Fischer, 1986); and in rhombohedral and hexagonal $\mathrm{Ag}^{\mathrm{I}} \mathrm{Fe}^{1 \mathrm{II}} \mathrm{O}_{2}$ the $\mathrm{Ag}-\mathrm{O}$ bond distances are $2 \cdot 067$ (8) and 2.07 (1) \AA, respectively (Prewitt, Shannon \& Rogers, 1971; Okamoto, Okamoto \& Ito, 1972). Peculiar are the high anisotropic displacement parameters of the $\mathrm{Ag}(1)$ atom: the r.m.s. amplitudes are $0.307,0.224$ and $0.148 \AA$. In addition, the sum of bond valences calculated according to Brown \& Altermatt (1985) amounts to $0.74 \mathrm{v} . \mathrm{u}$. which seems to be definitely too small for monovalent silver. Therefore, the obvious supposition is that the disorder concerns not only the nitrate group but also the $\operatorname{Ag}(1)$ atom. The delocalization of the $\operatorname{Ag}(1)$

[^0]Table 1. Atomic fractional coordinates and equivalent isotropic displacement factors (\AA^{2}) with e.s.d.'s in parentheses

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {cq }}$
$\mathrm{Ag}(1)$	0	$\frac{1}{2}$	0	0.0606 (5)
$\mathrm{Ag}(2)$	0.49712 (9)	0.28547 (6)	$0 \cdot 14190$ (3)	0.0319 (2)
$\mathrm{Ag}(3)$	0.95412 (9)	0.42839 (7)	0.31704 (5)	0.0409 (2)
$\mathrm{Cu}(1)$	0	0	0	0.0148 (3)
$\mathrm{Cu}(2)$	$\frac{1}{2}$	0	$\frac{1}{2}$	0.0164 (3)
$\mathrm{Se}(1)$	0.00564 (7)	-0.03145 (6)	0.32410 (3)	0.0148 (2)
O(11)	$0 \cdot 1943$ (6)	0.1057 (5)	$0 \cdot 3923$ (2)	0.019 (1)
O(12)	0.0748 (6)	0.0835 (5)	$0 \cdot 1612$ (3)	0.022 (1)
O(13)	-0.2881 (6)	0.0780 (6)	0.3368 (3)	0.022 (1)
$\mathrm{Se}(2)$	0.47566 (8)	0.75135 (6)	0.16446 (3)	0.0162 (2)
$\mathrm{O}(21)$	0.3145 (6)	0.8277 (5)	0.0161 (3)	0.023 (1)
O (22)	0.3620 (8)	0.5206 (5)	$0 \cdot 2280$ (3)	0.029 (2)
O(23)	0.7769 (6)	0.7012 (6)	$0 \cdot 1153$ (3)	0.026 (2)
N	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0.026 (3)
O(1)	0.7364 (19)	0.5609 (18)	0.4584 (8)	0.048 (5)
O(2)	0.3559 (18)	0.6443 (14)	0.5044 (8)	0.039 (4)
$\mathrm{O}(3)$	$0 \cdot 5396$ (17)	0.6609 (11)	0.4573 (6)	0.030 (4)

Table 2. Selected interatomic distances (\AA) and bond angles (${ }^{\circ}$)

Bond distances $\mathrm{Ag}-\mathrm{O}$ and $\mathrm{Ag}-\mathrm{Ag}<3.50$ and $\mathrm{Cu}-\mathrm{O}<3.00 \AA$ are listed. Indices indicate the distinct orientation of the nitrate group (simultaneous occurrence of interatomic distances indexed a and b or c and d, respectively, is impossible).

* Only two of these four additional $\mathrm{Cu}-\mathrm{O}$ bond distances occur in one $\mathrm{Cu}^{[4+2]} \mathrm{O}_{6}$ polyhedron.
atoms off the $\overline{1}$ position (either statistically or dynamically) towards the additional ligands might increase the coordination number of $\mathrm{Ag}(1)$ according to a decrease of the $\mathrm{Ag}-\mathrm{O}$ distances.

The irregular coordination figures found for the atoms $\mathrm{Ag}(2)$ and $\mathrm{Ag}(3)$ agree well with crystal chemical experience. The sum of bond valences is 1.18 v.u. for the $\operatorname{Ag}(2)$ atom and varies from 0.98 to 1.13 v.u. for $\mathrm{Ag}(3)$ depending on the distinct orientation of the nitrate group (coordination numbers [5] or [6]). Consequently the $\mathrm{Ag}(2)$ atom has the lowest r.m.s. amplitudes of the three Ag atoms in the title compound $(0.214,0.170$ and $0.130 \AA)$, whereas the $\operatorname{Ag}(3)$ atom has r.m.s. amplitudes of $0.265,0.166$ and $0.156 \AA$.

Both Cu atoms (site symmetry $\overline{1}$) are tetragonal bipyramidally [$4+2$] coordinated by O atoms; this distortion from a regular octahedron is well known for divalent Cu atoms due to their electron configuration d^{9} (Jahn-Teller effect). The average $\langle\mathrm{Cu}-\mathrm{O}\rangle$ bond lengths of the four equatorial O atoms differ significantly for the two Cu atoms (1.989 and

Fig. 1. The crystal structure of $\mathrm{Ag}_{5} \mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{SeO}_{3}\right)_{4}$ projected on (100). The selenite groups are hatched, the nitrate groups are dotted. Both orientations of the nitrate group are indicated; $\mathrm{Ag}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{O}$ bonds to the half occupied O -atom positions are dotted, additional $\mathrm{Cu}(1)-\mathrm{O}$ bonds are drawn by a broken line.
$1.962 \AA$). The nearest-neighbour environment is an approximate square; the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles deviate by $\pm 4.6(1)^{\circ}$ and $\pm 1 \cdot 7(1)^{\circ}$ from 90°, corresponding $\mathrm{O}-\mathrm{O}$ edges vary from 2.697 (4) to 2.922 (5) \AA. The deviation from a regular coordination is somewhat larger for the apices: the distortion of the angles $\mathrm{O}_{\text {equatorial }}-\mathrm{Cu}-\mathrm{O}_{\text {apical }}$ is up to $\pm 11 \cdot 9(2)^{\circ}$, the edges $\mathrm{O}_{\text {equatorial }}-\mathrm{O}_{\text {apical }}$ vary from 2.934 (10) to $3 \cdot 588$ (10) \AA. The six ligands of the $\mathrm{Cu}(1)$ atoms and the four nearest neighbours of the $\mathrm{Cu}(2)$ atom are exclusively formed by O atoms of selenite groups; the apical ligands of the $\mathrm{Cu}(2)$ atom belong to the nitrate group; this seems to be the reason for the somewhat higher temperature factor of the $\mathrm{Cu}(2)$ atom as compared to the $\mathrm{Cu}(1)$ atom.

The average $\langle\mathrm{Se}-\mathrm{O}\rangle$ bonds of the two selenite groups are equal to each other within limits of error. In contrast, the $\langle\mathrm{O}-\mathrm{Se}-\mathrm{O}\rangle$ angle at the $\mathrm{Se}(1)$ atom $\left(99 \cdot 0^{\circ}\right)$ is significantly smaller than at the $\mathrm{Se}(2)$ atom $\left(101 \cdot 3^{\circ}\right)$, in accordance the average $\langle\mathrm{O}-\mathrm{O}\rangle$ edges are 2.586 and $2.625 \AA$, respectively. It is to be expected that these differences result from the particular connection of the selenite groups with the other coordination polyhedra: each of the three O atoms of the $\mathrm{Se}(1) \mathrm{O}_{3}$ group participates in a short $\mathrm{Cu}-\mathrm{O}$ bond, only one O atom of the $\mathrm{Se}(2) \mathrm{O}_{3}$ group takes part in the formation of a short $\mathrm{Cu}-\mathrm{O}$ bond and another one in a long $\mathrm{Cu}-\mathrm{O}$ bond; the third O atom of the $\mathrm{Se}(2) \mathrm{O}_{3}$ group is not involved in the coordination of the Cu atoms. On the contrary the shortest $\mathrm{Ag}-\mathrm{O}$ bonds are formed with O atoms of the $\mathrm{Se}(2) \mathrm{O}_{3}$ group.

As mentioned above the nitrate group shows an orientational disorder restricted by an inversion centre which causes inaccurate atomic coordinates of $\mathrm{O}(1), \mathrm{O}(2)$ and $\mathrm{O}(3)$. $\mathrm{N}-\mathrm{O}(1)$ seems to be too long, $\mathrm{N}-\mathrm{O}$ (3) too short; nevertheless the sequence of individual $\mathrm{N}-\mathrm{O}$ bond lengths coincides with the distinct coordination of each of the three atoms $\mathrm{O}(1)$, $O(2)$ and $O(3)$.

The crystal structure of $\mathrm{Ag}_{5} \mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{SeO}_{3}\right)_{4}$ consists of sheets in (010) formed by a corner connection of CuO_{4} squares and $\mathrm{Se}(1) \mathrm{O}_{3}$ groups. $\mathrm{Se}(2) \mathrm{O}_{3}$ groups are branched to these sheets via the atoms $\mathrm{O}(21)$ and $\mathrm{O}(23)$ (Fig. 1). Connection is achieved by the complex coordination polyhedra of the Ag atoms. The nitrate group is bound to the $\mathrm{Cu}(2)$ atom (additional ligands) and to the $\operatorname{Ag}(3)$ atom. The linkage of the coordination polyhedra in the title compound is in accordance with a good cleavage parallel to (010).

The author thanks the Hochschuljubiläumsstiftung der Stadt Wien for financial support.

References

Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247. Effenberger, H. (1986). Monatsh. Chem. 117, $1099-1106$.

Jansen, M. \& Fischer, P. (1988). J. Less-Common Met. 137, 123-131.
Окаmoto, S., Окаmoto, S. I. \& Ito, T. (1972). Acta Cryst. B28, 1774-1777.
Prewitt, C. T., Shannon, R. D. \& Rogers, D. B. (1971). Inorg. Chem. 10, 719-723.

Swanson, H. E., Morris, M. C., Stinchfield, R. P. \& Evans, E. H. (1962). Natl Bur. Stand. (US) Monogr. 25, Section 1, p. 45 .

Yvon, K., Bezinge, A., Tissot, P. \& Fischer, P. (1986). J. Solid State Chem. 65, 225-230.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1991). C47, 2525-2526

Structure of $\left[\mathrm{Et}_{\mathbf{4}} \mathrm{N}| | \mathrm{InI}\left\{\mathbf{C o}(\mathbf{C O})_{4}\right\}_{3}\right]$

By Lucy M. Clarkson
Department of Chemistry, The University, Newcastle upon Tyne NE1 7RU, England
Louis J. Farrugia*
Department of Chemistry, The University, Glasgow G12 8QQ, Scotland
and Nicholas C. Norman
Department of Chemistry, The University, Newcastle upon Tyne NE1 7RU, England

(Received 29 April 1991; accepted 27 June 1991)

Abstract

Tetraethylammonium iodotris(tetracarbonylcobaltio)indate($1-$), $\quad \mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}^{+} . \mathrm{C}_{12} \mathrm{Co}_{3}-$ $\mathrm{IInO}_{12}^{-}, \quad M_{r}=884.9$, monoclinic, $\quad P 2_{1} / c, \quad a=$ 11.341 (1), $b=16.551$ (1), $c=16.429$ (1) $A, \quad \beta=$ $92.110(6)^{\circ}, \quad V=3081.7(4) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.91 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=33.6 \mathrm{~cm}^{-1}$, $F(000)=1704, T=298 \mathrm{~K}, R=0.039$ for 3647 unique observed reflections. The anion contains an indium atom coordinated to an iodine and three cobalt atoms in a slightly distorted tetrahedral environment.

Introduction. There are several examples of cobalt carbonyl complexes containing indium (Clarkson, McCrudden, Norman \& Farrugia, 1990) and herein we report the structure of $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{InI}\left\{\mathrm{Co}(\mathrm{CO})_{4}\right\}_{3}\right]$ (1). Compound (1) completes a series of the general formula $\left[\operatorname{In} X_{n}\left\{\mathrm{Co}(\mathrm{CO})_{4}\right\}_{4-n}\right]^{-}(A)$, where X is a halide. Previous examples are [PPN][InBr 3^{-} $\left.\left\{\mathrm{Co}(\mathrm{CO})_{4}\right\}\right] \quad$ (2) $\quad\left(\mathrm{PPN}=\mathrm{Ph}_{3} \mathrm{PNPPh}_{3}^{+}\right] \quad$ (Burlitch, Leonowicz, Petersen \& Hughes, 1979), [$\left.\mathrm{Et}_{4} \mathrm{~N}\right]-$ $\left[\mathrm{InBr}_{2}\left\{\mathrm{Co}(\mathrm{CO})_{4}\right\}_{2}\right]$ (3) (Cradwick, 1971), [Q]$\left[\mathrm{InCl}_{2}\left\{\mathrm{Co}(\mathrm{CO})_{4}\right\}_{2}\right] \quad\left[Q=\mathrm{PPN} \quad\right.$ (4); $Q=\mathrm{Co}(\mathrm{CO})_{3}{ }^{-}$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}(5)\right]$ (Clarkson et al., 1990) and $\left[\mathrm{Ph}_{4} \mathrm{As}\right]-$ $\left[\operatorname{In}\left\{\operatorname{Co}(\mathrm{CO})_{4}\right\}_{4}\right](6)$ (Robinson \& Schussler, 1971). Compounds (3)-(5) have been structurally characterized. A crystal of (1) was obtained from the reaction between $\mathrm{K}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ and $\left[\operatorname{In}\left\{\mathrm{Co}(\mathrm{CO})_{4}\right\}_{3}\right]$ followed by addition of $\left[\mathrm{Et}_{4} \mathrm{~N}\right] \mathrm{I}$ and crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane mixtures, although this pro-

[^1]cedure afforded $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\operatorname{In}\left\{\mathrm{Co}(\mathrm{CO})_{4}\right\}_{4}\right]$ as the main product. With regard to the formation of (1), we note that the reaction between $\left[\operatorname{In}\left\{\mathrm{Co}(\mathrm{CO})_{4}\right\}_{3}\right]$ and $\left[\mathrm{Ph}_{4} \mathrm{As}\right] \mathrm{Cl}$ was reported (Robinson \& Schussler, 1971) to give a compound $\left[\mathrm{Cl}\left(\operatorname{In}\left\{\mathrm{Co}(\mathrm{CO})_{4}\right\}_{3}\right)_{2}\right]^{-}$, with no evidence for a $1: 1$ indium-halide species. Compound (1) is therefore the first of type A with $n=1$.

Experimental. Yellow prisms from dichloromethane/ hexane solution: crystal dimensions ca $0.4 \times 0.4 \times$ 0.5 mm ; systematic absences: $k=2 n+1$ in $0 k 0 ; l=$ $2 n+1$ in $h 0 l$; Enraf-Nonius CAD-4F diffractometer; graphite monochromator; $\theta / 2 \theta$ scan mode; cell parameters refined by least-squares methods from setting angles of 25 independent reflections with $11<$ $\theta<13^{\circ}$; intensities measured to $\theta=25.0^{\circ}$ over hkl range 0 to 13,0 to $19,-19$ to $19 ; \overline{2} \overline{7} 7, \overline{1}, 11,0$ and $\overline{3}, 10, \overline{1}$ measured every 2 h with a 5% decay over 49.5 h data collection; 5398 data measured, 5423 independent data with 3647 having $I>3.0 \sigma(I)$ considered observed and used in structure determination and refinement; $R_{\text {int }} 0.134$ before and 0.036 after absorption correction; corrected for decomposition, Lp and absorption (DIFABS; Walker \& Stuart, 1983), max., min. values of applied absorption correction 1.27, 0.73. Solved by direct methods (MITHRIL; Gilmore, 1984) and subsequent fullmatrix least squares; anisotropic thermal parameters for all non-H atoms, fixed isotropic thermal parameters ($U=0.08 \AA^{2}$) for H atoms; H atoms included at calculated positions $(\mathrm{C}-\mathrm{H}=1.0 \AA) ; \quad \sum w\left(|F|_{o}-\right.$ (c) 1991 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54341 (18 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.

